<p>ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse, using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can differ in function (ATP synthesis and/or hydrolysis), structure (e.g., F-, V- and A-ATPases, which contain rotary motors) and in the type of ions they transport [<cite idref="PUB00020603"/>, <cite idref="PUB00020604"/>]. The different types include:</p><p> <ul><li>F-ATPases (F1F0-ATPases), which are found in mitochondria, chloroplasts and bacterial plasma membranes where they are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts).</li><li>V-ATPases (V1V0-ATPases), which are primarily found in eukaryotic vacuoles and catalyse ATP hydrolysis to transport solutes and lower pH in organelles.</li><li>A-ATPases (A1A0-ATPases), which are found in Archaea and function like F-ATPases (though with respect to their structure and some inhibitor responses, A-ATPases are more closely related to the V-ATPases).</li><li>P-ATPases (E1E2-ATPases), which are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes.</li><li>E-ATPases, which are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.</li> </ul> </p><p>V-ATPases (also known as V1V0-ATPase or vacuolar ATPase) (<db_xref db="EC" dbkey="3.6.3.14"/>) are found in the eukaryotic endomembrane system, and in the plasma membrane of prokaryotes and certain specialised eukaryotic cells. V-ATPases hydrolyse ATP to drive a proton pump, and are involved in a variety of vital intra- and inter-cellular processes such as receptor mediated endocytosis, protein trafficking, active transport of metabolites, homeostasis and neurotransmitter release [<cite idref="PUB00020609"/>]. V-ATPases are composed of two linked complexes: the V1 complex (subunits A-H) contains the catalytic core that hydrolyses ATP, while the V0 complex (subunits a, c, c', c'', d) forms the membrane-spanning pore. V-ATPases may have an additional role in membrane fusion through binding to t-SNARE proteins [<cite idref="PUB00020608"/>].</p><p>This entry represents subunit B from the V1 complex of V-ATPases. There are three copies each of subunits A (<db_xref db="INTERPRO" dbkey="IPR005725"/>) and B, both of which participate in nucleotide binding. However, only subunit A is catalytic for ATP hydrolysis, subunit B being noncatalytic [<cite idref="PUB00020609"/>, <cite idref="PUB00007885"/>]. </p><p>More information about this protein can be found at Protein of the Month: ATP Synthases [<cite idref="PUB00020719"/>].</p> ATPase, V1 complex, subunit B